A Note on Equation (4) in “A Computationally Useful Algebraic Representation of

Nonlinear Disjunctive Convex Sets Using the Perspective Function”

The purpose of this note is to provide more insight around a condition that appears

in [1] as equation (4). In [1], Furman, Sawaya & Grossmann study the disjunctive set

F:qu,

jed

where J is finite, CjE{XGRn

Gj(x)go} and Gj:R“—>(Ru{oo})m" are vector
mappings whose components g;,i=1...m; are proper closed convex functions.
Furthermore, C,;, Vj e J are assumed to be compact, though not necessarily non-empty.

The set eps—rel F(g) is defined to be all those (x,v, 1) € R™"™MI that satisfy the

following set of constraints for some 0 <& <1:

X=>v,

((1—8)11- +8)gij (m}-ggu(())(l—lj) <0, i :l...mj, J elJ

> a,=1

jed

11-20, jeld,

and eps—MIP F (&) E{(X,v,ﬂ,) eeps—rel F(g)‘ 4,;€{01}, je J}. The projection of
eps—MIP F(¢) onto the X space is defined as
proj,, (eps — MIP F(g))s{Xeeps—MlP F(g)| (v, A) eeps—MIP F(g)}, and in
Proposition 1 of [1], it was proven that for any 0<e¢ <1, proj,,(eps—MIP F(g))=F

under the assumption that the sets C; = {x eR"

G,(x) < o} are such that G, (0) is defined

and the following condition holds:



{XE]R"

Gj(x)—Gj(O)SO}:{O}, Vjel. 1)

This is the condition that appears in [1] as equation (4). If this condition holds, then the
vector function G,(x) is such that the only point x e R" satisfying G,(x)-G,(0)<0
Vj e J is the “0” point. This condition is needed in order to ensure that v;. =0 when 4; =1
for Vj' \'jeJ in eps—MIP F(g) (see equations (14)-(15) in the proof of Proposition 1
in [1]). On the other hand, if the condition in (1) does not hold, then
proj,, (eps —MIP F(&)) = F . We show this through the following simple example.

Example 1. Let F=C,uC,, where ClE{XER‘(X—l)Z—ZSO} and

C,= {x eR[3<x< 4} . The feasible regions of sets C, and C, are plotted below.

g(x)

gn(@)=(x=1*-2

g,(x)=—-x+3




The condition described in (1) doesn’t hold for set C, since
{XER‘((X—l)Z—Z)—(—l)SO} ={xeR[x*-2x<0} = {x e R|x(x~2) <0}, which

implies that 0 < x <2 (which is clearly not {0}). We can also see this graphically:

g, (x)-g,(0)=(x- ' -1 l’

-1

-2 4

As such, if we generate eps —MIP F (&) for this set, proj,,(eps—MIP F(g)) = F.
Indeed, the eps— MIP F(&) formulation of this disjunctive set for some 0< ¢ <1 is the

following:

X=v,+Vv,

Vi

(A-&)4+e) [[W

J 2}5(1)(111) <0

(Q-e)4, +8)|:3— }—5(3)(1—/12)30

(1-e )/12

(@-2)4, +g)[ —4} -¢(-4)(1-4,)<0

(1- )/1
A+, =1

A, €{0,1}.
We can simplify this to:



X=v,+Vv,

Vi _ ’ _ e .
31-4) <v, <4(1-4)

4, €{0,1}.

When 4, =1, then v, =0; thus x=v, and (x-1)*>-2<0, which checks out. However,

2
&

2 2
when 4 =0, 3<v,<4 and g{pi—£]—2}+gso::g{ﬁ;—2ﬁ+¢—2J+gso
& &

2
:>i—2v130 :vl(ﬁ—zjgo, which implies that 0<v, <2¢; therefore, v, is not
& &

necessarily equal to 0 when A, =0. As such, our reformulation is not an exact

representation of the original disjunctive problem.

Example 2. Let us now slightly modify the example above by imposing bounds inside the

(x-1)2-2<0

term C, such that the new set C,=<xeR
-1<x<3

} ;. we keep

C,= {x € ]R|3 <x< 4} . Clearly, the feasible region for C, remains the same as in Example

1 since the bounds are technically redundant. We can see this graphically:



2] gu(¥) =(x=1y -2

8u(¥)=x-3

However, the condition described in (1) now holds for the set C, since

((x-D*-2)-(-) =<0 X2 —2x<0
X(x-2)<0 .
xeR|-x-1-(-1)<0 =<xeR|x>0 =:xeR ) , which
X =
x—3-(-3)<0 x<0

implies that x =0. We can also see this graphically:

X
(?( ) 8u(0) =g, (0)=(x=1" -1
g}l(x)_gjl(o):j/ !

g21(x)_g21(0)=;x g“(x):(x—l)z—z

gu(x)=x-3




If we generate eps—MIP F(g) for this set, proj,,(eps—MIP F(¢g))=F.Indeed,
the eps— MIP F (&) formulation of this disjunctive set for some 0< & <1 is the following:

X=v,+Vv,

((1 E)ﬂ,l +€) [[le 2} —8(—1)(1—11) <0

_ "
(-84 +¢) _—1—m}—5(—1)(1—ﬂ1) <0
_ .
(A-&)4 +¢) _m—%—g(—@a—ﬂl) <0
v, B B
((l—g)ﬂ,z +6') |:3—m:| 8(3)(1 /12) <0
(Q-e)4, +g)[W—4}—g(—4)(l—/lz)£0
A+, =1
4, €{0,1}.
We can simplify this to:
X=v, +V,
(@- 5)%+5)[(m ] —2]—5(—1)(1—/11)<0
-, <v, <34
31-4)<v,<4(1-4)
4, €{0,1}.

When 4, =1, then v, =0; thus x=v, and (x—1)* -2 <0, which checks out. When 4 =0,
then v,=0; thus x=v, and 3<x<4 and g[(0—1)2—2}+gso:>g(—1)+g£0

= 0<0, which is redundant. As such, our reformulation is an exact representation of the

original disjunctive problem.



It turns out that having bounds on all variables inside every term of the disjunction
automatically insures that the condition in (1) holds. In fact, if a subset of the constraints

g; make up a polytope a;x <b,

;» 1=1...1; <m,, then the condition in (1) always holds.

We prove this in the following proposition:

- ax<b;, i=1._.1, _ )
Proposition 1. If the sets C,={xeR" ) , Vjeld, with
g; () <0,i=1+1;...m,
a;x<b;, i=1...1; defining a polytope, then the condition in (1) holds.
Proof: For simplicity of notation, let us replace a;x<b;, i=1...I, by Ax<b,, with A

an I, xn matrix. It is well known that the recession cone of A;x<b, is Ax<0 (see for
e.g. p. 39 in [2]). Furthermore, by definition, a polytope is a closed and bounded

polyhedron; therefore it is compact. As such, {XGR”

ijso}:{o} ([2] Section A

AXx<0

Proposition 2.2.3). This implies that 1 x e R"| _ _{(0}. But
g;(X)—9;(0)<0,i=1+I,...m;

(ij_bj)_(_bj)

this corresponds precisely to (1), with G, (x) -G, (0) = _ .
J : gij(X)—gij(O),l:1+Ij...mj

Corollary 1. If the sets C,, VjeJ contain explicit bounds x,™ <x, <x,” on every

variable x,, k =1...n, then the condition in (1) holds.

Proof: This automatically follows from Proposition 1 by virtue of the fact that the explicit

bounds on every variable x,, k =1...n constitute a polytope.



Remark 1. In order for Corollary 1 to apply, every term C; must contain bounds on every
variable x,, k=1..n thatappears in any term C,; otherwise, Corollary 1 fails to hold. We

show the latter in the following example.

(x,-1)*-2<0 and
-1<x <3

Example 3. Let F=C,uC,, where Cls{(xi,xz)e]R2

3<x <4

. The feasible regions of sets C, and C, are plotted below
3<Xx,<4

C,= {(Xy Xz) eR?

(in separate graphs for clarity of exposition, followed by the projection onto the (x, x,)

space):
gn(x) = (x1 _1)2 —2

gu(¥)=x-3
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Since the variables x, and x, appear in C,, bounds on both x, and x, are needed
in both C, and C, in order for Corollary 1 to hold. However, in Example 3, only bounds
on x, appear; therefore Corollary 1 does not hold, and the condition in (1) does not hold.
As such, if we generate eps—MIP F(g) for this set, proj,,(eps—MIP F(¢)) = F. Indeed,

the eps—MIP F(g) formulation of this disjunctive set for some 0< ¢ <1 is the following:



X =V, tVy,

X, =Vy tVy

Via

-, <v,, <34
34, v, <44,

(L-&)4 +2) l[

34, <v, <42,
A+A,=1
A, €{0,1}.

When 4, =1,then 4,=0 and v,, =v,, =0; thus x, =v,;, (x, —1)*-2<0 and -1<x <3,
which checks out. However, when 4 =0, although v;, =0 and therefore x, =v,, (which
implies that 4, =1 and 3<x, <4), there are no bounds on v,, to drive it to O (since there
are no bounds on x, in C,). As such, x, =v,, +v,,, and although 3<v,, <4, since v,, Is

unbounded, there is no guarantee that 3< x, <4. As such, our reformulation is not an exact

representation of the original disjunctive problem.

Although Proposition 1 provides a sufficient condition for (1) to hold, having a

subset of the constraints g;,i=1...1; <m; making up a polytope (or having bounds on

every variable) is not necessary for (1) to hold. We show this via the following example.

Example 4. Let F =C, UC,, where ClE{XER‘XZ—].SO} and C,={xeR[3<x<4}.

The feasible regions of sets C, and C, are plotted below:

10



a g,(x)= X -1

g,(x)=-x+3 ]

~

('
s 4/.; x

N

/|
The condition described in (1) holds for set C, since {x eR|(x* -1)-(-1) so}

= {x € ]R‘x2 < O} , which implies that x =0. We can also see this graphically:

g(x)
/

1 g,(x)—-g,(0)= X’

/

X

Of course, the condition also holds for set C, because we have a bounded range on
X (see Corollary 1). Indeed, {x eR|(x—4)-(-4) <0 (-x+3)-(3) < o}
={xeR|x<0n x>0}, whichimplies that x =0. Now if we generate the eps— MIP F (&)

formulation of this disjunctive set for some 0< & <1, we get (after simplifying):

11



X=v,+V,

Vi ’ IR .
3(1-4)<v, <4(1-1)
4, €{0,1}.

When 4 =1, then v, =0; thus x=v, and x*-1<0, which checks out. When 4 =0,

2 2 2
{(ﬁj —1}530 =4 _cie<0=% <0, which implies that v, =0. Therefore,
& g g

Xx=v, and 3<x<4, which checks out. As such, our reformulation is an exact

representation of the original disjunctive problem.

Our final example highlights another nice feature of the condition in (1). If (1)
holds, then we can write an equivalent algebraic reformulation to the disjunctive convex
set F = U C; using the formulation in [1] even when some (or all) of the sets C, are empty.

jed

Example 5. Let F =C, UC,, where Clz{XER‘XZ—].S O} and C, E{XER

3<x<4
5<Xx<6|

The feasible regions of sets C, and C, are plotted below:

g(x)

g,(x)= P |
g,(x)=—x+5

RN

2

12



Clearly, the set C, is empty. However, the condition in (1) holds even for

(X_4)—(—4)SOm(—x+3)_(3)30} :{XGR XSOQXZO}, which

C, since <xeR
(x—6)—(-6) <0N(-x+5)—(5) <0 [x<0nx>0

implies that x =0 (we’ve already seen that (1) holds for C, per Example 4) . Now if we

generate the eps— MIP F (&) formulation of this disjunctive set for some 0< ¢ <1, we get

(after simplifying):

X=v,+V,

v, 2_ s
((15)21+5)[[mj 1} e(-D1-4)<0

3(-4) <v, <4(L-4)
51-4)<v,<6(1-4)
4 €{0,13}.

When 4, =1, then v, =0; thus x=v, and x*-1<0, which checks out. When 4, =0,
2

2 2
gﬂﬁj —1}530 =4 i e<0=% <0, which implies that v, =0. Therefore,
& 15 g

X=v, and 3<x<4 and 5<x<6, which is empty (and therefore checks out). As such,

our reformulation is an exact representation of the original disjunctive problem.
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