
1 

 

A Note on Equation (4) in “A Computationally Useful Algebraic Representation of 

Nonlinear Disjunctive Convex Sets Using the Perspective Function” 

 

The purpose of this note is to provide more insight around a condition that appears 

in [1] as equation (4). In [1], Furman, Sawaya & Grossmann study the disjunctive set 
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where J  is finite,  ( ) 0n

j jC x G x    and   :
jmn

jG     are vector 

mappings whose components , 1ij jg i m  are proper closed convex functions. 

Furthermore, ,jC j J   are assumed to be compact, though not necessarily non-empty.  

The set ( )eps rel F   is defined to be all those | | | |( , , ) n n J Jx v     that satisfy the 

following set of constraints for some 0 1  : 
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and  ( ) ( , , ) ( ) {0,1},jeps MIP F x eps rel F j J          . The projection of 

( )eps MIP F   onto the x space is defined as   

 ( ) ( ( )) ( ) ( , ) ( )xproj eps MIP F x eps MIP F eps MIP F          , and in 

Proposition 1 of [1], it was proven that for any 0 1  , ( ) ( ( ))xproj eps MIP F F   

under the assumption that the sets  ( ) 0n

j jC x G x    are such that (0)jG  is defined 

and the following condition holds:  
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    ( ) (0) 0 0 ,n

j jx G x G j J      . (1)  

 

This is the condition that appears in [1] as equation (4). If this condition holds, then the 

vector function ( )jG x  is such that the only point nx  satisfying ( ) (0) 0j jG x G   

j J   is the “0” point. This condition is needed in order to ensure that ' 0j   when 1j   

for '  \j j J   in ( )eps MIP F   (see equations (14)-(15) in the proof of Proposition 1 

in [1]). On the other hand, if the condition in (1) does not hold, then

( ) ( ( ))xproj eps MIP F F  . We show this through the following simple example.  

 

Example 1. Let 1 2F C C  , where  2

1 ( 1) 2 0C x x      and 

 2 3 4C x x    . The feasible regions of sets 1C  and 2C  are plotted below.  
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The condition described in (1) doesn’t hold for set 1C  since  

  2( 1) 2 ( 1) 0x x       2 2 0x x x     ( 2) 0x x x    , which 

implies that 0 2x   (which is clearly not  0 ). We can also see this graphically: 

 

As such, if we generate ( )eps MIP F   for this set, ( ) ( ( )) .xproj eps MIP F F 

Indeed, the ( )eps MIP F   formulation of this disjunctive set for some 0 1   is the 

following: 

 1 2x   
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 1 2 1     

    1 {0,1}  . 

We can simplify this to:   
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 1 2x   
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 1 2 13(1 ) 4(1 )        

 1 {0,1}  .  

 

When 1 1  , then 2 0  ; thus 1x   and 2( 1) 2 0x    , which checks out. However, 

when 1 0  , 23 4   and 
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, which implies that 10 2   ; therefore, 1  is not 

necessarily equal to 0 when 1 0  . As such, our reformulation is not an exact 

representation of the original disjunctive problem. 

 

Example 2. Let us now slightly modify the example above by imposing bounds inside the 

term  1C  such that the new set 
2

1

( 1) 2 0

1 3

x
C x

x

    
  

    

; we keep 

 2 3 4C x x    . Clearly, the feasible region for 1C  remains the same as in Example 

1 since the bounds are technically redundant. We can see this graphically: 
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However, the condition described in (1) now holds for the set 1C  since  

 2( 1) 2 ( 1) 0

1 ( 1) 0

3 ( 3) 0

x

x x
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( 2) 0

0

x x
x

x
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  

 
, which 

implies that 0x  . We can also see this graphically: 
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If we generate ( )eps MIP F   for this set, ( ) ( ( )) .xproj eps MIP F F  Indeed, 

the ( )eps MIP F   formulation of this disjunctive set for some 0 1   is the following: 

 1 2x   
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((1 ) ) 4 ( 4)(1 ) 0
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  
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 1 2 1     

    1 {0,1}  . 

We can simplify this to:   

 1 2x   

   

 1 1 13      

 1 2 13(1 ) 4(1 )        

 1 {0,1}  .  

 

When 1 1  , then 2 0  ; thus 1x   and 2( 1) 2 0x    , which checks out. When 1 0,   

then 1 0  ; thus 2x   and 3 4x   and  
2

0 1 2 0     
 

 1 0      

0 0  , which is redundant. As such, our reformulation is an exact representation of the 

original disjunctive problem. 

2

1
1 1

1

((1 ) ) 1 2 ( 1)(1 ) 0
(1 )


    

  

  
         

    
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It turns out that having bounds on all variables inside every term of the disjunction 

automatically insures that the condition in (1) holds. In fact, if a subset of the constraints 

ijg  make up a polytope ,  1ij ij j ja x b i l m   , then the condition in (1) always holds. 

We prove this in the following proposition: 

 

Proposition 1.  If the sets 
,  1

,  
( ) 0, 1

ij ij jn

j

ij j j

a x b i l
C x j J

g x i l m

    
    

    

, with 

,  1ij ij ja x b i l    defining a polytope, then the condition in (1) holds.  

 

Proof: For simplicity of notation, let us replace ,  1ij ij ja x b i l   by j jA x b , with jA  

an jl n  matrix. It is well known that the recession cone of j jA x b  is 0jA x   (see for 

e.g. p. 39 in [2]). Furthermore, by definition, a polytope is a closed and bounded 

polyhedron; therefore it is compact. As such,    0 0n

jx A x    ([2] Section A 

Proposition 2.2.3). This implies that  
0

0
( ) (0) 0, 1

jn

ij ij j j

A x
x

g x g i l m

   
  

     

. But 

this corresponds precisely to (1), with 
( ) ( )

( ) (0)
( ) (0), 1 ...

j j j

j j

ij ij j j

A x b b
G x G

g x g i l m

  
  

  

.  

                     

 

Corollary 1. If the sets , jC j J   contain explicit bounds j jLB UB

k k kx x x  on every 

variable ,  1...kx k n , then the condition in (1) holds.  

 

Proof: This automatically follows from Proposition 1 by virtue of the fact that the explicit 

bounds on every variable ,  1...kx k n  constitute a polytope.  

                     
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Remark 1. In order for Corollary 1 to apply, every term jC  must contain bounds on every 

variable ,  1...kx k n   that appears in any term jC ; otherwise, Corollary 1 fails to hold. We 

show the latter in the following example. 

 

Example 3. Let 1 2F C C  , where 
2

2 1

1 1 2

1

( 1) 2 0
( , )

1 3

x
C x x

x

    
  

    

 and 

12

2 1 2

2

3 4
( , )

3 4

x
C x x

x

    
  

   
. The feasible regions of sets 1C  and 2C  are plotted below 

(in separate graphs for clarity of exposition, followed by the projection onto the 1 2( , )x x  

space): 
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Since the variables 1x  and 2x  appear in 2C , bounds on both 1x  and 2x  are needed 

in both 1C  and 2C  in order for Corollary 1 to hold. However, in Example 3, only bounds 

on 1x  appear; therefore Corollary 1 does not hold, and the condition in (1) does not hold. 

As such, if we generate ( )eps MIP F   for this set, ( ) ( ( )) .xproj eps MIP F F  Indeed, 

the ( )eps MIP F   formulation of this disjunctive set for some 0 1   is the following: 
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1 11 12x     

2 21 22x     

2

11
1 1

1

((1 ) ) 1 2 ( 1)(1 ) 0
(1 )


    

  

  
         

    

 

                                                            1 11 13      

2 12 23 4     

2 22 23 4     

   1 2 1     

                                                               1 {0,1}  . 

 

When 1 1  , then 2 0   and 12 22 0   ; thus 1 11x  , 2

1( 1) 2 0x     and 11 3,x    

which checks out. However, when 1 0  , although 11 0   and therefore 1 12x   (which 

implies that 2 1   and 13 4x  ), there are no bounds on 21  to drive it to 0 (since there 

are no bounds on 2x  in 1C ). As such, 2 21 22x    , and although 223 4  , since 21  is 

unbounded, there is no guarantee that 23 4x  . As such, our reformulation is not an exact 

representation of the original disjunctive problem. 

 

Although Proposition 1 provides a sufficient condition for (1) to hold, having a 

subset of the constraints , 1ij j jg i l m   making up a polytope (or having bounds on 

every variable) is not necessary for (1) to hold. We show this via the following example.  

 

Example 4. Let 1 2F C C  , where  2

1 1 0C x x     and  2 3 4C x x    . 

The feasible regions of sets 1C  and 2C  are plotted below: 
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The condition described in (1) holds for set 1C  since    2 1 ( 1) 0x x      

 2 0x x   , which implies that 0x  . We can also see this graphically: 

 

    

Of course, the condition also holds for set 2C  because we have a bounded range on 

x  (see Corollary 1). Indeed,     4 ( 4) 0 3 (3) 0x x x         

 0 0x x x     , which implies that 0x  . Now if we generate the ( )eps MIP F   

formulation of this disjunctive set for some 0 1  , we get (after simplifying): 
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 1 2x      

 

2

1
1 1

1

((1 ) ) 1 ( 1)(1 ) 0
(1 )


    

  

  
        

    

  

 1 2 13(1 ) 4(1 )        

 1 {0,1}  .  

 

When 1 1  , then 2 0  ; thus 1x   and 2 1 0x   , which checks out. When 1 0  , 

2

1 1 0


 


  
    

   

 
2

1 0


 


   
2

1 0



  , which implies that 1 0  . Therefore, 

2x   and 3 4x  , which checks out. As such, our reformulation is an exact 

representation of the original disjunctive problem.    

  

Our final example highlights another nice feature of the condition in (1). If (1) 

holds, then we can write an equivalent algebraic reformulation to the disjunctive convex 

set j
j J

F C


   using the formulation in [1] even when some (or all) of the sets jC  are empty.  

Example 5. Let 1 2F C C  , where  2

1 1 0C x x     and 2

3 4

5 6

x
C x

x

   
  

  
. 

The feasible regions of sets 1C  and 2C  are plotted below: 
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 Clearly, the set 2C  is empty. However, the condition in (1) holds even for 

2C  since 
   

   

4 ( 4) 0 3 (3) 0

6 ( 6) 0 5 (5) 0

x x
x

x x

          
 

          

0 0

0 0

x x
x

x x

     
  

    

, which 

implies that 0x   (we’ve already seen that (1) holds for 1C  per Example 4) . Now if we 

generate the ( )eps MIP F   formulation of this disjunctive set for some 0 1  , we get 

(after simplifying): 

 

 1 2x      

 

2

1
1 1

1

((1 ) ) 1 ( 1)(1 ) 0
(1 )


    

  

  
        

    

  

 1 2 13(1 ) 4(1 )       

 1 2 15(1 ) 6(1 )        

 1 {0,1}  .  

 

When 1 1  , then 2 0  ; thus 1x   and 2 1 0x   , which checks out. When 1 0  , 

2

1 1 0


 


  
    

   

 
2

1 0


 


   
2

1 0



  , which implies that 1 0  . Therefore, 

2x   and 3 4x   and 5 6x  , which is empty (and therefore checks out). As such, 

our reformulation is an exact representation of the original disjunctive problem.    
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